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Considerable research effort has recently been focused on t
interplay between molecular architecture, molecular order, an
macroscopic propertiégsMany of these studies involve self-
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hydrophobicity of its aromatic core, catidnundergoes entropi-
cally driven self-organization into lyotropic liquid-crystalline
phase in aqueous solutiéh.The mechanical force used in
spreading this liquid-crystalline solution to form a liquid film on

a solid support simultaneously induces the alignment of the
aggregates along the direction of spreading. Moreover, this order
is then transferred to the solid state upon removal of solvent. Thus,
a cascade of molecular order (Figure 1) is generated starting with

hen isotropic (random) solution and ending withamisotropically
d ordered solid film that linearly polarizes light.

We chose the 3,4,9,10-perylene diimide hydrophobic core

assembly or self-organization processes in which molecules Pecause itis widely used in pigments and organic semiconductors
associate spontaneously into ordered aggregates as a result oith applications in optical films, photoconducting materials,

noncovalent interactions and/or entropic factors. In contrast to
self-assembly that involves atom-specific interactions producing
assemblies with definable structufeself-organization involves

sensors, and electroluminescent displdyss a result of the shape
anisotropy of perylenediimides, these molecules are dichroic and
exhibit anisotropic absorption (light with a polarization axis

less specific interactions generating aggregates with less definablg?arallel to the long axis of the molecule is absorbed.) However,

structures such as cell membrafdsany self-organized materials
are liquid-crystalline; molecules in this intermediate phase are
mobile as in liquids and yet show short-range orientational order

in most known applications the molecules are isotropically
oriented and their intrinsic dichroic properties have not been fully
exploited. This is partly due to the low solubility of perylenedi-

as in crystalé. Tremendous success has been achieved in theimides in common solvents, hampering processing of the

control of self-assembly or self-organization in solutidmspno-
layers® and thin multilayer films, tailoring their macroscopic

material and precluding convenient techniques for orienting the
molecules on a macroscopic scale in the solid phase. We

properties. The manipulation of structural order and macroscopic anticipated that the functionalization of the hydrophobic perylene

properties of thick films and bulk solids, however, remains a major
challengée® While liquid-crystalline mesophases aresbibrt-range

core with cationic groups would impart amphiphilicity, rendering
it soluble in water. These water-soluble dyes are then good

structural regularity only, induced alignment of the self-organized candidates for exhibiting lyotropic liquid-crystalline behavior
ensembles under an external force can increase the degree opecause their “plank” shape allows them to stéckVe thus

orientational order over substantially longer rangi the desired

converted the known diimide® a—b?® into their corresponding

direction. This phenomenon has long been observed and employedaltsla—b and explored the formation of lyotropic mesophases

in many important applicatiorfsBy preserving this long-range
anisotropic (direction-dependent) order during the transition from
liquid to solid phase, a solid matrix with desirable structural

from these cationic perylene compounds (Scheme 1).
Agueous solutions ofa exhibit the liquid-crystalline nematic
marbled texture (Figure 2a) when observed under a polarizing

regularity and anisotropic properties persisting to the macroscopic microscopé?® We then simultaneously deposited and aligned these

scale could be obtained. Surprisingly, this straightforward and
promising approach to manipulating properties of solid-phase
materials has not been widely uséd.

In this communication, we report the unprecedented control
of molecular orientation in solid films of an amphiphilic poly-
aromatic compoundl, using this approach. As a result of the
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mesophases on glass slidéShe molecules in the liquid film
were uniformly aligned eoer a large area and polarized light
Significantly, the transition from lyotropic to solid phase upon
drying does not disrupt the alignment or the optical properties of
the film. As shown in Figure 2b, visible light is transmitted when
its polarization axis is parallel to the spreading or shearing of the
film. In contrast, only red light is transmitted when the polarization
axis of incident light is orthogonal to the shearing direction (Figure
2c). These results indicate that the majority of the amphiphiles
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Figure 1. Cascade of molecular order: Cartoon representation of the self-organization of amphiphilic dichroic diimidgueous media forming

lyotropic liquid-crystalline phase and order-transfer to solid phase.

Figure 2. Photomicrographs (a)d) from left to right. (a) The lyotropic phase @& in aqueous solution (9 wt %, 0.14 M, 50X); (b) an air-dried film
prepared from 15 wt % solution dfa with the shearing axis (in verticle direction) parallel to the polarization axis of incident light; (c) the same sample
as in (b) except the polarization axis of incident light is rotatet 8ad (d) an air-dried film prepared from a 13 wt % solutioriLbf (b — d are 750X.)
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are oriented with the long axis of the aromatic core orthogonal
to the spreading direction, resulting in anisotropic absorption of
light. Analysis at higher magnification by scanning electron
microscopy indicated that the optical texture shown in Figure 2b
is due to surface topography and not domain boundaries.

As expected, thin films prepar€drom isotropic solutions (for
example, 0.1 wt. %) do not exhibit polarization properties since
the molecules are isotropically oriented. This confirms that self-
organization into the liquid-crystalline phase is prerequisite for
generating anisotropic solid films using our strategy.

Similar behavior is observed fdb, although the concentration
of its solution is different in producing liquid-crystalline meso-
phase that can be uniformly oriented. For example, at a
concentration of 9 wt %, uniform polarizing films are produced.
At higher concentrations (e.g., 13 wt %), the lyotropic domain

sizes increase, as a result of extensive aggregation. The domain

are not uniformly ordered after deposition and alignment (Figure
2d), resulting in minimal bulk-polarizing properties.
We quantified these observations by polarized-tiNé spec-

troscopy, examining the same air-dried films used in Figures 2b

and 2c. The thin films display a broad absorption band that
extends from about 468600 nm (Figure 3). The broadening is
significant when compared with absorption bands for dilute

aqueous solutions suggesting orbital interactions between the
perylene aromatic cores. When unpolarized incident light is used,

the maximum degree of polarization of light){® transmitted by
these polarizing films is 99% (Figure 3). The dichroic rafig)(‘®
which is equal to the ratio of the two principal absorption

coefficients associated with the orthogonal directions in the plane

of the film, was determined to exceed the value of 20.af To

a first approximation, the dichroic ratio is a measure of the degree
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Figure 3. Optical properties of a thin film ofadeposited on glass from

a 15 wt % aqueous solutiofi(0°) is the transmittance when the aligned
film's shearing axis is parallel to the polarization of the incident light.
T(90°) is the transmittance when it is orthogonal. Mean transmittance
(To) is a measure of the transmittance of unpolarized incident light.

of anisotropic orientation of the molecules in the film. These
optical parameters of the films d&arival commercial polarizers
and indicate highly anisotropic orientation of the amphiphiles in
the films!® Similar optical properties are observed for films
grepared frm a 9 wt %solution of 1b.

In summary, the unprecedented control-of-orientation of cat-
ionic perylene diimides in solid films is achieved by a combination
of self-organization, mechanically induced orientation, and order-
transfer processes.
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